Understand how unenforced Key Constraints can benefit queries in BigQuery.
For more than a decade now, the Hive table format has been a ubiquitous presence in the big data ecosystem, managing petabytes of data with remarkable efficiency and scale. But as the data volumes, data variety, and data usage grows, users face many challenges when using Hive tables because of its antiquated directory-based table format. Some of the common issues include constrained schema evolution, static partitioning of data, and long planning time because of S3 directory listings.
Iceberg is an emerging open-table format designed for large analytic workloads. The Apache Iceberg project continues developing an implementation of Iceberg specification in the form of Java Library. Several compute engines such as Impala, Hive, Spark, and Trino have supported querying data in Iceberg table format by adopting this Java Library provided by the Apache Iceberg project.
Any organisation wanting to pursue digital transformation understands the value of good-quality data. Data is akin to digital gold, and it is immensely important to strategic decision-making. Ensuring that your data or BI team has everything they need is part of the challenge.
As generative AI continues to captivate attention with its transformative potential, there is a danger that traditional AI and ML become overshadowed. But as I mentioned in my last blog, this would be a mistake as traditional AI methods still hold immense value and relevance, and likely more so than generative AI in the near term.
Apache Impala and Apache Kudu make a great combination for real-time analytics on streaming data for time series and real-time data warehousing use cases. More than 200 Cloudera customers have implemented Apache Kudu with Apache Spark for ingestion and Apache Impala for real-time BI use cases successfully over the last decade, with thousands of nodes running Apache Kudu.