Systems | Development | Analytics | API | Testing

Latest News

Top 10 AI & Data Podcasts You Should Be Listening To

With the speed of change in artificial intelligence (AI) and big data, podcasts are an excellent way to stay up-to-date on recent developments, new innovations, and gain exposure to experts’ personal opinions, regardless if they can be proven scientifically. Great examples of the thought-provoking topics that are perfect for a podcast’s longer-form, conversational format include the road to AGI, AI ethics and safety, and the technology’s overall impact on society.

How to Build Real-Time Feature Engineering with a Feature Store

Simplifying feature engineering for building real-time ML pipelines might just be the next holy grail of data science. It’s incredibly difficult and highly complex, but it’s also desperately needed for multiple use cases across dozens of industries. Currently, feature engineering is siloed between data scientists, who search for and create the features, and data engineers, who rewrite the code for a production environment.

Enabling The Full ML Lifecycle For Scaling AI Use Cases

When it comes to machine learning (ML) in the enterprise, there are many misconceptions about what it actually takes to effectively employ machine learning models and scale AI use cases. When many businesses start their journey into ML and AI, it’s common to place a lot of energy and focus on the coding and data science algorithms themselves.

Democratizing Machine Learning Capabilities With Qlik Sense and Amazon SageMaker

The ability to discover insights from past events, transactions and interactions is how many customers currently utilize Qlik. Qlik’s unique approach to Business Intelligence (BI) using an in-memory engine and intuitive interface has democratized BI for typical business users, who usually have little to no technical savvy. But, for many years, organizations have only been able to analyze metrics or KPIs of “what has happened” (i.e., descriptive analytics).

Predictive Real-Time Operational ML Pipeline: Fighting First-Day Churn

Retaining customers is more important for survival than ever. For businesses that rely on very high user volume, like mobile apps, video streaming, social media, e-commerce and gaming, fighting churn is an existential challenge. Data scientists are leading the fight to convert and retain high LTV (lifetime value) users.

Introducing Lightweight, Customizable ML Runtimes in Cloudera Machine Learning

With the complexity of data growing across the enterprise and emerging approaches to machine learning and AI use cases, data scientists and machine learning engineers have needed more versatile and efficient ways of enabling data access, faster processing, and better, more customizable resource management across their machine learning projects.

What's new in BigQuery ML: non-linear model types and model export

We launched BigQuery ML, an integrated part of Google Cloud’s BigQuery data warehouse, in 2018 as a SQL interface for training and using linear models. Many customers with a large amount of data in BigQuery started using BigQuery ML to remove the need for data ETL, since it brought ML directly to their stored data. Due to ease of explainability, linear models worked quite well for many of our customers.

Kubeflow: Simplified, Extended and Operationalized

The success and growth of companies can be determined by the technologies they rely on in their tech stack. To deploy AI enabled applications to production, companies have discovered that they’ll need an army of developers, data engineers, DevOps practitioners and data scientists to manage Kubeflow — but do they really? Much of the complexity involved in delivering data intensive products to production comes from the workflow between different organizational and technology silos.

AI, ML and ROI - Why your balance sheet cares about your technology choices

Much has been written on the growth of machine learning and its impact on almost every industry. As businesses continue to evolve and digitally transform, it’s become an imperative for businesses to include AI and ML in their strategic plans in order to remain competitive. In Competing in the Age of AI, Harvard professors Marco Iansiti and Karim R. Lakhani illustrate how this can be confounding for CEOs, especially in the face of AI-powered competition.

Concept Drift and the Impact of COVID-19 on Data Science

Modern business applications leverage Machine Learning (ML) and Deep Learning (DL) models to analyze real-world and large-scale data, to predict or to react intelligently to events. Unlike data analysis for research purposes, models deployed in production are required to handle data at scale and often in real-time, and must provide accurate results and predictions for end-users.