Systems | Development | Analytics | API | Testing

AI

Introduction to Machine Learning Models

Over the last 100 years alone, artificial intelligence has achieved what was once believed to be science fiction: cars that drive themselves, machine learning models that diagnose heart disease better than doctors can, and predictive customer analytics that lead to companies knowing their customers better than their parents do. This machine learning revolution was sparked by a simple question: can a computer learn without explicitly being told how?

How Trigo Built a Scalable AI Development & Deployment Pipeline for Frictionless Retail

Trigo is a provider of AI & computer vision based checkout-free systems for the retail market, enabling frictionless checkout and a range of other in-store operational and marketing solutions such as predictive inventory management, security and fraud prevention, pricing optimization and event-driven marketing.

Are Your Machine Learning Models Wrong?

In addition to the very real negative impact on every person around the world, the COVID-19 pandemic is driving business disruptions and closures at an unprecedented scale. Enormous government stimulus programs are resulting in explosions in fiscal deficits, regulators are relaxing capital constraints on banks and central banks are supporting economic stability with a range of interest rate cuts and other stimulus measures.

Setting up Allegro AI's Trains Platform

There’s a lot to track when training your ML models, and there’s no way around it; reviews and comparisons for best performance are virtually impossible without logging each experiment in detail. Yes, building models and experimenting with them is exciting work, but let’s agree that all that documentation can be laborious and error-prone – especially when you are essentially doing data entry grunt work, manually, using Excel spreadsheets.

WTF is a Convolutional Neural Network?

If you are a software engineer, there's a good chance that deep learning will inevitably become part of your job in the future. Even if you're not building the models that directly use CNNs, you might have to collaborate with data scientists or help business partners better understand what is going on under the hood. In this article, Julie Kent dives into the world of convolutional neural networks and explains it all in a not-so-scary way.

The Future of Testing is Intelligent - Diego Lo Giudice, Forrester Research

Slowly but surely, artificial intelligence (AI) and machine learning (ML) are becoming an active part of our daily lives, shaping, for better or worse, the technologies and applications we use each and every day. We already know that AI and ML capabilities are helping make testing solutions – and the testers that use them – more effective and efficient than ever before.

Implementing distributed model training for deep learning with Cloudera Machine Learning

Many enterprise data science teams are using Cloudera’s machine learning platform for model exploration and training, including the creation of deep learning models using Tensorflow, PyTorch, and more. However, training a deep learning model is often a time-consuming process, thus GPU and distributed model training approaches are employed to accelerate the training speed.