Systems | Development | Analytics | API | Testing

Latest News

9 Top Testing Trends to Watch in 2024

While AI and machine learning have been industry buzzwords for a while, they are now becoming fundamental to software testing. Machine learning algorithms are making it easier to sift through logs, identify patterns, and even predict where bugs are most likely to occur. As these technologies mature, the role of AI in software testing will undoubtedly expand.

23 Best Free NLP Datasets for Machine Learning

NLP is a field of AI that enables machines to understand, interpret, and generate human language in a way that is both meaningful and contextually relevant. Recently, ChatGPT and similar applications have created a surge in consumer and business interest in NLP. Now, many organizations are trying to incorporate NLP into their offerings.

How Leveraging Machine Learning in Product Analytics Improves Insights and Actionability

Product analytics traditionally hinged on examining user interactions to extract actionable insights. The integration of machine learning (ML) has elevated this process, enriching our understanding and our ability to predict future trends. Let's unfold how ML integrates into product analytics and the transformative advantages it introduces. ‍

A Complete Guide To AI/ML Software Testing

There is no doubt about it: Artificial Intelligence (AI) and Machine Learning (ML) has changed the way we think about software testing. Ever since the introduction of the disruptive AI-powered language model ChatGPT, a wide range of AI-augmented technologies have also emerged, and the benefits they brought surely can’t be ignored. In this article, we will guide you to leverage AI/ML in software testing to bring your QA game to the next level.

Snowpark ML: The 'Easy Button' for Open Source LLM Deployment in Snowflake

Companies want to train and use large language models (LLMs) with their own proprietary data. Open source generative models such as Meta’s Llama 2 are pivotal in making that possible. The next hurdle is finding a platform to harness the power of LLMs. Snowflake lets you apply near-magical generative AI transformations to your data all in Python, with the protection of its out-of-the-box governance and security features.

A CPO's Guide to Using Generative AI Within the Enterprise

Generative AI (GenAI) has the potential to transform enterprise product operations, and as a Chief Product Officer (CPO), it’s essential to understand how to leverage generative AI to drive success within your product organization. This article serves as a comprehensive guide for how CPOs can use GenAI in product strategy, design, and innovation – generating new product ideas, creating unique designs, and exploring different variations and options.

Model Observability and ML Monitoring: Key Differences and Best Practices

AI has fundamentally changed the way business functions. Adoption of AI has more than doubled in the past five years, with enterprises engaging in increasingly advanced practices to scale and accelerate AI applications to production. As ML models become increasingly complex and integral to critical decision-making processes, ensuring their optimal performance and reliability has become a paramount concern for technology leaders.

Generative AI vs. Machine Learning

Machine learning watching generative artificial intelligence (AI) take off feels a little bit like an American Girl doll envying the Barbie movie excitement from afar. What is she, chopped liver? But we can’t forget about machine learning, because it’s the giant that generative AI is standing on. How? Well, machine learning is how generative AI learns. Generative AI takes machine learning a step further by leveraging those learnings to produce something new.

How CIOs Can Capitalize on Generative AI to Meet Their Enterprise Goals

Artificial intelligence (AI) has become a driving force in the digital transformation of businesses across various industries. As Chief Information Officers (CIOs) strive to stay ahead of the AI hype cycle in today’s competitive landscape, harnessing generative AI in particular can help them achieve their enterprise AI goals – by transforming processes, boosting productivity, and enhancing decision-making.