Build and Manage ML Features for Production-Grade Pipelines with Snowflake Feature Store
When scaling data science and ML workloads, organizations frequently encounter challenges in building large, robust production ML pipelines. Common issues include redundant efforts between development and production teams, as well as inconsistencies between the features used in training and those in the serving stack, which can lead to decreased performance. Many teams turn to feature stores to create a centralized repository that maintains a consistent and up-to-date set of ML features.