Systems | Development | Analytics | API | Testing

Astera

Improving Healthcare Data Governance and Integration with Astera

One of the key processes in healthcare data management is integrating data from many patient information sources into a centralized repository. This data comes from various sources, ranging from electronic health records (EHRs) and diagnostic reports to patient feedback and insurance details.

Exploring the Connection Between Data Governance and Data Quality

Data governance and data quality are closely related, but different concepts. The major difference lies in their respective objectives within an organization’s data management framework. Data quality is primarily concerned with the data’s condition. It ensures the data is complete, accurate, reliable, and consistent. On the other hand, data governance refers is the overall management, maintaining compliance, and ensuring the security of data assets within an organization.

Data Governance Framework: What is it? Importance, Pillars and Best Practices

Data forms the foundation of the modern insurance industry, where every operation relies on digitized systems, including risk assessment, policy underwriting, customer service, and regulatory compliance. Given this reliance, insurance companies must process and manage data effectively to gain valuable insight, mitigate risks, and streamline operations.

Information Governance vs. Data Governance: A Comparative Analysis

Every digital interaction generates data. This data can provide invaluable insights and drive effective decision-making when managed effectively. . However, according to a survey, up to 68% of data within an enterprise remains unused, representing an untapped resource for driving business growth. One way of unlocking this potential lies in two critical concepts: data governance and information governance.

Data Quality Framework: What It Is and How to Implement It

A data quality framework is a set of guidelines that enable you to measure, improve, and maintain the quality of data in your organization. The goal is to ensure that organizational data meets specific standards, i.e., it is accurate, complete, consistent, relevant, and reliable at all times—from acquisition and storage to subsequent analysis and interpretation. eBook: A Guide to Data Quality Management Download eBook.

All You Need to Know About Data Completeness

Data completeness plays a pivotal role in the accuracy and reliability of insights derived from data, that ultimately guide strategic decision-making. This term encompasses having all the data, ensuring access to the right data in its entirety, to avoid biased or misinformed choices. Even a single missing or inaccurate data point can skew results, leading to misguided conclusions, potentially leading to losses or missed opportunities.

Data Ingestion vs. ETL: Understanding the Difference

Working with large volumes of data requires effective data management practices and tools, and two of the frequently used processes are data ingestion and ETL. Given the similarities between these two processes, non-technical people seek to understand what makes them different, often using search queries like “data ingestion vs ETL”.

What is a Data Catalog? Features, Best Practices, and Benefits

A data catalog is a central inventory of organizational data. It provides a comprehensive view of all data assets in an organization, including databases, tables, files, and data sources. Efficiently managing large amounts of information is crucial for companies to stay competitive. This practice is especially applicable to large organizations with scattered data.