Systems | Development | Analytics | API | Testing

Machine Learning

MLRun v1.7 Launched - Solidifying Generative AI Implementation and LLM Monitoring

As the open-source maintainers of MLRun, we’re proud to announce the release of MLRun v1.7. MLRun is an open-source AI orchestration tool that accelerates the deployment of gen AI applications, with features such as LLM monitoring, fine-tuning, data management, guardrails and more. We provide ready-made scenarios that can be easily implemented by teams in organizations.

Why Monitoring Matters to ML Data Intelligence in Databricks

Machine learning operations (MLOps) is a practice that focuses on the operationalization of machine learning models. It involves automating and streamlining the lifecycle of ML models, from development and training to deployment and monitoring. Much like data operations (DataOps), MLOps aims to improve the speed and accuracy of the data you’re accessing and analyzing.

The Impact of AI and Machine Learning In Quality Assurance

Some of the popular AI tools people and corporations are using now include ChatGPT, Google Gemini, and Microsoft Copilot. This has resulted in higher usage and adoption of this technology and this has caused some worry among people, particularly in terms of employment. However, for software testers, these changes should be seen as a chance to improve rather than a threat.

Build and Manage ML Features for Production-Grade Pipelines with Snowflake Feature Store

When scaling data science and ML workloads, organizations frequently encounter challenges in building large, robust production ML pipelines. Common issues include redundant efforts between development and production teams, as well as inconsistencies between the features used in training and those in the serving stack, which can lead to decreased performance. Many teams turn to feature stores to create a centralized repository that maintains a consistent and up-to-date set of ML features.

How ClearML Stacks Up Against Alternate Solutions - Weights & Biases

At first glance, ClearML’s AI Development Center and alternatives such as Weights & Biases seem to offer similar capabilities for MLOps. For example, both solutions support experiment management, data management, and orchestration. However, each product is designed to solve a different use case. It is important to understand how these approaches affect the user experience.

The Cloud Exit: Cost, Security, and Performance Driving the Move Back to On-Premises

The last decade has seen a giant shift by organizations into the cloud for software, storage, and compute, resulting in business benefits ranging from flexibility and lower up-front costs to easier maintenance. But lately we have seen more and more companies re-evaluating their cloud strategies and opting to move their data back to on-premises infrastructure due to several key factors.

Qlik AutoML Series - Understanding Coordinate SHAP Analytics - Video 5

In this video, we breakdown the analytics you can create from the provided Coordinate SHAP data when used within Qlik AutoML. SHAP data helps determine the WHY behind the machine learning model predictions. Learn how SHAP values break down the influence of individual features on specific outcomes, helping you gain deeper insights into model behavior. This is part 5 of the Qlik AutoML series, focusing on making machine learning more interpretable for users.

Gen AI for Marketing - From Hype to Implementation - MLOps Live #32 with McKinsey and Iguazio

In this MLOps Live session we were joined by Eli Stein, Partner and Modern Marketing Capabilities Leader at McKinsey, to delve into how data scientists can leverage generative AI to support the company’s marketing strategy. We showcased a live demo of a customer-facing AI agent developed for a jewelry retailer, which can be used as a marketing tool to offer personalized product recommendations and purchasing information and support. Following the demo, we held an interactive discussion and Q&A session. Enjoy!