Unravel provides full-stack coverage and a unified, end-to-end view of everything going on in your environment, plus recommendations from our rules-based model and our AI engine. Unravel works on-premises, in the cloud, and for cloud migration.
With the complexity of data growing across the enterprise and emerging approaches to machine learning and AI use cases, data scientists and machine learning engineers have needed more versatile and efficient ways of enabling data access, faster processing, and better, more customizable resource management across their machine learning projects.
We launched BigQuery ML, an integrated part of Google Cloud’s BigQuery data warehouse, in 2018 as a SQL interface for training and using linear models. Many customers with a large amount of data in BigQuery started using BigQuery ML to remove the need for data ETL, since it brought ML directly to their stored data. Due to ease of explainability, linear models worked quite well for many of our customers.
Upgrading components of Cloudera Data Warehouse (CDW) is as easy as one decision and a few clicks. While the Database (DB) Catalog and Virtual Warehouses (VWs) need to be compatible, the CDW upgrade framework understands the interoperability constraints between them.
Historically, analytics has not always been a priority feature for software vendors. Many applications typically are built with analytics bolted-on later, as standalone tools. But the changing needs of today’s business users has accelerated the importance of providing in-built ways to monitor and explore their data while they use your software.