How to Distribute Machine Learning Workloads with Dask
Tell us if this sounds familiar. You’ve found an awesome data set that you think will allow you to train a machine learning (ML) model that will accomplish the project goals; the only problem is the data is too big to fit in the compute environment that you’re using. In the day and age of “big data,” most might think this issue is trivial, but like anything in the world of data science things are hardly ever as straightforward as they seem.