Systems | Development | Analytics | API | Testing

Latest Posts

Demystifying Modern Data Platforms

July brings summer vacations, holiday gatherings, and for the first time in two years, the return of the Massachusetts Institute of Technology (MIT) Chief Data Officer symposium as an in-person event. The gathering in 2022 marked the sixteenth year for top data and analytics professionals to come to the MIT campus to explore current and future trends. A key area of focus for the symposium this year was the design and deployment of modern data platforms.

Chose Both: Data Fabric and Data Lakehouse

A key part of business is the drive for continual improvement, to always do better. “Better” can mean different things to different organizations. It could be about offering better products, better services, or the same product or service for a better price or any number of things. Fundamentally, to be “better” requires ongoing analysis of the current state and comparison to the previous or next one. It sounds straightforward: you just need data and the means to analyze it.

The Modern Data Lakehouse: An Architectural Innovation

Imagine having self-service access to all business data, anywhere it may be, and being able to explore it all at once. Imagine quickly answering burning business questions nearly instantly, without waiting for data to be found, shared, and ingested. Imagine independently discovering rich new business insights from both structured and unstructured data working together, without having to beg for data sets to be made available.

Large Scale Industrialization Key to Open Source Innovation

We are now well into 2022 and the megatrends that drove the last decade in data—The Apache Software Foundation as a primary innovation vehicle for big data, the arrival of cloud computing, and the debut of cheap distributed storage—have now converged and offer clear patterns for competitive advantage for vendors and value for customers.

Modern Data Architecture for Telecommunications

In the wake of the disruption caused by the world’s turbulence over the past few years, the telecommunications industry has come out reasonably unscathed. There remain challenges in workforce management, particularly in call centers, and order backlogs for fiber broadband and other physical infrastructure are being worked through. But digital transformation programs are accelerating, services innovation around 5G is continuing apace, and results to the stock market have been robust.

Five Reasons for Migrating HBase Applications to Cloudera Operational Database in the Public Cloud

Apache HBase has long been the database of choice for business-critical applications across industries. This is primarily because HBase provides unmatched scale, performance, and fault-tolerance that few other databases can come close to. Think petabytes of data spread across trillions of rows, ready for consumption in real-time.

Breaking State and Local Data Silos with Modern Data Architectures

Data is the fuel that drives government, enables transparency, and powers citizen services. But while state and local governments seek to improve policies, decision making, and the services constituents rely upon, data silos create accessibility and sharing challenges that hinder public sector agencies from transforming their data into a strategic asset and leveraging it for the common good.

Incremental Strategies to Move Your Data Strategy Forward

Firms are burdened with tech debt and endless regulatory compliance, often leaving innovation last to receive the necessary budgets. Data-fuelled innovation requires a pragmatic strategy. This blog lays out some steps to help you incrementally advance efforts to be a more data-driven, customer-centric organization.

Building Custom Runtimes with Editors in Cloudera Machine Learning

Cloudera Machine Learning (CML) is a cloud-native and hybrid-friendly machine learning platform. It unifies self-service data science and data engineering in a single, portable service as part of an enterprise data cloud for multi-function analytics on data anywhere. CML empowers organizations to build and deploy machine learning and AI capabilities for business at scale, efficiently and securely, anywhere they want.