Systems | Development | Analytics | API | Testing

Latest News

Integrating Your Data Warehouse and Data Mesh Strategies

Data warehousing requires data centralization, whereas data mesh enables a decentralized approach to data access. Organizations might think that the solution to their data management strategy requires a choice between the two, but the reality is that both approaches can and should co-exist.

Does the Data Warehouse Sit on a Single Physical Database?

This is a guest post for Integrate.io written by Bill Inmon, an American computer scientist recognized as the "father of the data warehouse." Inmon wrote the first book and first magazine column about data warehousing, held the first conference about this topic, and was the first person to teach data warehousing classes. Five things to know about this topic.

Data Science Maturity and Understanding Data Architecture/Warehousing

This is a guest post for Integrate.io written by Bill Inmon, an American computer scientist recognized as the "father of the data warehouse." Inmon wrote the first book and magazine column about data warehousing, held the first conference about this topic, and was the first person to teach data warehousing classes. Data science is immature. This statement is not pejorative; it is simply a statement of historical fact. As such, it is not arguable.

Choosing The Best Approach to Data Mesh and Data Warehousing

Data mesh is being talked about a lot to describe the way data is managed across the organization. But what does it really mean for your organization’s data management strategy and how can its framework support your business needs and drive data pipeline success? On a high level, data mesh is about connecting and enabling data management across distributed systems.

Building a Sustainable Data Warehouse Design

Data plays a vital role in the growth of an organization. Companies spend large amounts of money on building data and big data infrastructures such as data vaults, data marts, data lakes, and data warehouses. These infrastructures are populated via multiple data sources using robust ETL pipelines that function throughout the day. A data infrastructure must operate 24/7 to provide real-time analysis and data-driven business insights.

Pros & Cons of Using a Customer Data Platform as Your Data Warehouse

Does your Ecommerce business team understand the customer journey? By tracking the history of individual customer behavior and customer interactions across different channels, your organization can better understand what motivates your audience — and cater to them with the right marketing campaigns.

How to simplify and fast-track your data warehouse migrations using BigQuery Migration Service

Migrating data to the cloud can be a daunting task. Especially moving data from warehouses and legacy environments requires a systematic approach. These migrations usually need manual effort and can be error-prone. They are complex and involve several steps such as planning, system setup, query translation, schema analysis, data movement, validation, and performance optimization.