Systems | Development | Analytics | API | Testing

Iguazio

Accelerating ML Deployment in Hybrid Environments

We’re seeing an increase in demand for hybrid AI deployments. This trend can be attributed to a number of factors. First of all, many enterprises look to hybrid solutions to address data locality, in accordance with a rise in regulation and data privacy considerations. Secondly, there is a growing number of smart edge devices powering innovative new services across industries.

Handling Large Datasets in Data Preparation & ML Training Using MLOps

Data science has become an important capability for enterprises looking to solve complex, real-world problems, and generate operational models that deliver business value across all domains. More and more businesses are investing in ML capabilities, putting together data science teams to develop innovative, predictive models that provide the enterprise with a competitive edge — be it providing better customer service or optimizing logistics and maintenance of systems or machinery.

Lessons Learned on Operationalizing Machine Learning at Scale with IHS Markit

According to Gartner, over 80% of data science projects never make it to production. This is the main problem that enterprises are facing today, when bringing data science into their organization or scaling existing projects. In this session, Senior Data Scientist Nick Brown will share his lessons learned from operationalizing machine learning at IHS Markit. He will discuss the functional requirements required to operationalize machine learning at scale, and what you need to focus on to ensure you have a reliable solution for developing and deploying AI.

The Importance of Data Storytelling in Shaping a Data Science Product

Artificial intelligence and machine learning are relentlessly revolutionizing marketplaces and ushering in radical, disruptive changes that threaten incumbent companies with obsolescence. To maintain a competitive edge and gain entry into new business segments, many companies are racing to build and deploy AI applications.

How to Build Real-Time Feature Engineering with a Feature Store

Simplifying feature engineering for building real-time ML pipelines might just be the next holy grail of data science. It’s incredibly difficult and highly complex, but it’s also desperately needed for multiple use cases across dozens of industries. Currently, feature engineering is siloed between data scientists, who search for and create the features, and data engineers, who rewrite the code for a production environment.