Systems | Development | Analytics | API | Testing

Iguazio

Breaking the Silos Between Data Scientists, Engineers & DevOps with New MLOps Practices

Effectively bringing machine learning to production is one of the biggest challenges that data science teams today struggle with. As organizations embark on machine learning initiatives to derive value from their data and become more “AI-driven” or “data-driven”, it’s essential to find a faster and simpler way to productionize machine learning projects so that they can make business impact faster.

Breaking the Silos Between Data Scientists, Eng & DevOps - MLOPs Live #6 - With Ecolab

Building scalable #AI applications that generate value in real business environments require not just advanced technologies, but also better processes for #datascience, #engineering and #devops teams to collaborate effectively. We will be deep diving into this topic on our next #MLOpsLive webinar with: Greg Hayes, Data Science Director at Ecolab and Yaron Haviv, our Co-Founder and CTO.

MLRun Functions DEMO: Python Jupyter (Open-Source Data Science Orchestration + Experiment Tracking)

MLRun is a generic and convenient mechanism for #data scientists and software developers to build, run, and monitor #machinelearning (ML) tasks and pipelines on a scalable cluster while automatically tracking executed code, metadata, inputs, and outputs. On-Premise or Barebone/Metal - including Edge AI / Analytics Customers include NetApp, Quadient, Payoneer (and many more).

Git-based CI / CD for Machine Learning & MLOps

For decades, machine learning engineers have struggled to manage and automate ML pipelines in order to speed up model deployment in real business applications. Similar to how software developers leverage DevOps to increase efficiency and speed up release velocity, MLOps streamlines the ML development lifecycle by delivering automation, enabling collaboration across ML teams and improving the quality of ML models in production while addressing business requirements.

Bringing ML Pipelines to Production - Challenges & Solutions - MLOPs Live #1 - With S&P Global

The session — featuring Ganesh Nagarathnam, Director Analytics & ML Engineering at S & P Global Market Intelligence, and Yaron Haviv, Co-Founder and CTO at Iguazio — goes beyond theory, with industry leaders sharing challenges and practical solutions that involve running Al experiments at scale, versioning, delivery to production, reproducibility and data access.

How to Save Costs (& Time) on Bringing AI to Production - MLOps Live #2 - With Quadient

The session — featuring Jason Evans, Director of DXP Innovation at Quadient, and Yaron Haviv, Co-Founder and CTO at Iguazio — goes beyond theory, with industry leaders sharing challenges and practical solutions that involve running AI experiments at scale, versioning, delivery to production, reproducibility and data access.

Git-Based CI CD for Machine Learning & MLOps - MLOps Live #3 - With Microsoft & GitHub

The session — featuring David Aronchick, Head of OSS ML Strategy at Microsoft; Marvin Buss, Azure Customer Engineer at Microsoft; Zander Matheson, Senior Data Scientist at GitHub; and Yaron Haviv, Co-Founder and CTO at Iguazio — goes beyond theory, with industry leaders sharing challenges and practical solutions that involve running AI experiments at scale, versioning, delivery to production, reproducibility, and data access.