Systems | Development | Analytics | API | Testing

Iguazio

Building an Automated ML Pipeline with a Feature Store Using Iguazio & Snowflake

When operationalizing machine and deep learning, a production-first approach is essential for moving from research and development to scalable production pipelines in a much faster and more effective manner. Without the need to refactor code, add glue logic and spend significant efforts on data and ML engineering, more models will make it to production and with less issues like drift.

Iguazio Product Update: Optimize Your ML Workload Costs with AWS EC2 Spot Instances

Iguazio users can now run their ML workloads on AWS EC2 Spot instances. When running ML functions, you might want to control whether to run on Spot nodes or On-Demand compute instances. When deploying Iguazio MLOps platform on AWS, running a job (e.g. model training) or deploying a serving function users are now able to choose to deploy it on AWS EC2 Spot compute instances.

From AutoML to AutoMLOps: Automated Logging & Tracking of ML

AutoML with experiment tracking enables logging and tracking results and parameters, to optimize machine learning processes. But current AutoML platforms only train models based on provided data. They lack solutions that automate the entire ML pipeline, leaving data scientists and data engineers to deal with manual operationalization efforts. In this post, we provide an open source solution for AutoMLOps, which automates engineering tasks so that your code is automatically ready for production.