Systems | Development | Analytics | API | Testing

Iguazio

Nuclio Demo

Nuclio is a high-performance serverless framework focused on data, I/O, and compute intensive workloads. It is well integrated with popular data science tools, such as Jupyter and Kubeflow; supports a variety of data and streaming sources; and supports execution over CPUs and GPUs. The Nuclio project began in 2017 and is constantly and rapidly evolving; many start-ups and enterprises are now using Nuclio in production. In this video, Tomer takes you through a quick demo of Nuclio, triggering functions both from the UI and the CLI.

LLMOps vs. MLOps: Understanding the Differences

Data engineers, data scientists and other data professional leaders have been racing to implement gen AI into their engineering efforts. But a successful deployment of LLMs has to go beyond prototyping, which is where LLMOps comes into play. LLMOps is MLOps for LLMs. It’s about ensuring rapid, streamlined, automated and ethical deployment of LLMs to production. This blog post delves into the concepts of LLMOps and MLOps, explaining how and when to use each one.

GenAI for Financial Services - MLOps Live #25 with McKinsey

Generative AI has sparked the imagination with the explosion of tools like ChatGPT, CodePilot and others, highlighting the importance of LLMs as the basis for modern AI applications. However, implementing GenAI in the enterprise is challenging, and it becomes even more difficult for banks, insurance companies, and other financial services companies. Many Financial Service companies are struggling and end up missing out on the great value of GenAI and the competitive edge it can provide.

Implementing Gen AI in Practice

Across the industry, organizations are attempting to find ways to implement generative AI in their business and operations. But doing so requires significant engineering, quality data and overcoming risks. In this blog post, we show all the elements and practices you need to to take to productize LLMs and generative AI. You can watch the full talk this blog post is based on, which took place at ODSC West 2023, here.

How Sense Uses Iguazio as a Key Component of Their ML Stack

Sense is a talent engagement platform that improves recruitment processes with automation, AI and personalization. Since AI is a central pillar of their value offering, Sense has invested heavily in a robust engineering organization, including a large number of data and data science professionals. This includes a data team, an analytics team, DevOps, AI/ML, and a data science team. The AI/Ml team is made up of ML engineers, data scientists and backend product engineers.

How HR Tech Company Sense Scaled their ML Operations using Iguazio

Sense is a talent engagement company whose platform improves the recruitment processes with automation, AI and personalization. Since AI is a central pillar of their value offering, Sense has invested heavily in a robust engineering organization including a large number of data and AI professionals. This includes a data team, an analytics team, DevOps, AI/ML, and a data science team. The AI/Ml team is made up of ML engineers, data scientists and backend product engineers.

What Lays Ahead in 2024? AI/ML Predictions for the New Year

2023 was the year of generative AI, with applications like ChatGPT, Bard and others becoming so mainstream we almost forgot what it was like to live in a world without them. Yet despite its seemingly revolutionary capabilities, it's important to remember that Generative AI is an extension of “traditional AI”, which in itself is a step in the digital transformation revolution.

27 Best Free Human Annotated Datasets for Machine Learning

Successfully training AI and ML models relies not only on large quantities of data, but also on the quality of their annotations. Data annotation accuracy directly impacts the accuracy of a model and the reliability of its predictions. This is where human-annotated datasets come into play. Human-annotated datasets offer a level of precision, nuance, and contextual understanding that automated methods struggle to match.

Scaling MLOps Infrastructure: Components and Considerations for Growth

An MLOps platform enables streamlining and automating the entire ML lifecycle, from model development and training to deployment and monitoring. This helps enhance collaboration between data scientists and developers, bridge technological silos, and ensure efficiency when building and deploying ML models, which brings more ML models to production faster.

How to Build a Smart GenAI Call Center App

Building a smart call center app based on generative AI is a promising solution for improving the customer experience and call center efficiency. But developing this app requires overcoming challenges like scalability, costs and audio quality. By building and orchestrating an ML pipeline with MLRun, which includes steps like transcription, masking PII and analysis, data science teams can use LLMs to analyze audio calls from their call centers. In this blog post, we explain how.