Systems | Development | Analytics | API | Testing

AI

Beware of Creating a New Legacy of Artificial Intelligence Silos

Although the issue of silos in IT and data management are well known, companies appear to be falling back into this trap by not distributing their artificial intelligence (AI) and machine learning (ML) capabilities across their business. New research from Qlik and IDC revealed that just 20 percent of businesses widely distribute these capabilities across the organization.

How to Own That New State-of-the-Art Model Repo!

Deep learning has evolved in the past five years from an academic research domain, to being adopted, integrated and leveraged for new dimensions of productivity across multiple industries and use cases, such as medical imaging, surveillance, IoT, chatbots, robotic,s and many more. From NLP to computer vision, deep learning has been breaking the barriers of SOTA algorithms and providing results that were, otherwise, impossible to achieve.

Machine Learning with Jupyter: Solving the Workflow Management Problem using Open-platforms

The infamous data science workflow with interconnected circles of data acquisition, wrangling, analysis, and reporting understates the multi-connectivity and non-linearity of these components. The same is true for machine learning and deep learning workflows. I understand the need for oversimplification is expedient in presentations and executive summaries. However, it may paint unrealistic pictures, hide the intricacies of ML development and conceal the realities of the mess.

Audio Classification with PyTorch's Ecosystem Tools

Audio signals are all around us. As such, there is an increasing interest in audio classification for various scenarios, from fire alarm detection for hearing impaired people, through engine sound analysis for maintenance purposes, to baby monitoring. Though audio signals are temporal in nature, in many cases it is possible to leverage recent advancements in the field of image classification and use popular high performing convolutional neural networks for audio classification.

Accelerate your Hyperparameter Optimization with PyTorch's Ecosystem Tools

The design and training of neural networks are still challenging and unpredictable procedures. The difficulty of tuning these models makes training and reproducing more of an art than a science, based on the researcher’s knowledge and experience. One of the reasons for this difficulty is that the training procedure of machine learning models includes multiple hyperparameters that affect how the training process fits the model to the data.