Systems | Development | Analytics | API | Testing

AI

AI Expert Joanna Bryson Dishes on Due Diligence and Rooting Out AI Bias

There’s a lot of hype out there about artificial intelligence (AI) and how it’s revolutionizing this or transforming that. But in this timely remix of a previously published post, AI expert Joanna Bryson (@j2bryson) calls out AI hyperbole and helps us cut through the smoke and mirrors on: Note: Bryson is Professor of Ethics and Technology at the Hertie School of Governance in Berlin where she educates future technologists and policymakers on digital inclusion and AI governance.

Augmented analytics: 3 key advantages for software vendors

Artificial intelligence (AI), automation and machine learning (ML) are rapidly transforming the analytical experience for everyday business users in 2021. Whether it’s automated visualizations, continuous analysis, or reduced time-to-insight, there are many practical benefits of augmented analytics that are well documented and fully realized today.

Bringing It All Together in 2021

As a result of overwhelming excitement (and pressure) from my fellow Qlikkies, I’m going to share with you the recent demo I did at our all-company annual kick-off which shows Active Intelligence in action. It was intended to be an “internal-only” demo because it mixes existing capabilities with near-term future ones, but, on reflection, I think you, too, will be just as excited.

Good Testing Data is All You Need - Guest Post

Building machine learning (ML) and deep learning (DL) models obviously require plenty of data as a training-set and a test-set on which the model is tested against and evaluated. Best practices related to the setup of train-sets and test-sets have evolved in academic circles, however, within the context of applied data science, organizations need to take into consideration a very different set of requirements and goals. Ultimately, any model that a company builds aims to address a business problem.

Lessons Learned on Operationalizing Machine Learning at Scale with IHS Markit

According to Gartner, over 80% of data science projects never make it to production. This is the main problem that enterprises are facing today, when bringing data science into their organization or scaling existing projects. In this session, Senior Data Scientist Nick Brown will share his lessons learned from operationalizing machine learning at IHS Markit. He will discuss the functional requirements required to operationalize machine learning at scale, and what you need to focus on to ensure you have a reliable solution for developing and deploying AI.

The Train Has Left the Station for the Last Time

We have three big announcements to our community today, and I wanted to talk to you about them: One, Allegro Trains is changing its name, two, we’re adding a completely new way to use Trains, and three, we’re announcing a bunch of features that make Trains an even better product for you! Read all about it on our blog at Clear.ml, our new website for our open source suite of tools.

The Importance of Data Storytelling in Shaping a Data Science Product

Artificial intelligence and machine learning are relentlessly revolutionizing marketplaces and ushering in radical, disruptive changes that threaten incumbent companies with obsolescence. To maintain a competitive edge and gain entry into new business segments, many companies are racing to build and deploy AI applications.

Top 10 Thought Leaders in AI/ML We're Following

One of the best ways to stay current in the fast-evolving field of artificial intelligence and machine learning is by following thought leaders, evangelists, and influencers in the industry. In this article, we’ve selected 10 of the most influential thought leaders (listed alphabetically) that are helping drive the field forward.

Qlik Analytics 2020 - Alerting, Augmented Analytics, Active Intelligence and More

2020 was quite a year of innovation for Qlik analytics. We delivered key new augmented analytics capabilities with big updates to Insight Advisor, we integrated intelligent alerts fully into Qlik Sense in less than a year, we continued to expand our visualization capabilities to make it easier to showcase your data in exciting and compelling ways, and we made it even easier to execute analytics in the cloud.

Top 10 AI & Data Podcasts You Should Be Listening To

With the speed of change in artificial intelligence (AI) and big data, podcasts are an excellent way to stay up-to-date on recent developments, new innovations, and gain exposure to experts’ personal opinions, regardless if they can be proven scientifically. Great examples of the thought-provoking topics that are perfect for a podcast’s longer-form, conversational format include the road to AGI, AI ethics and safety, and the technology’s overall impact on society.