Analytics

Improving Data Quality: CDC and Hard/Soft Deletes by Integrate.io

When your data systems don’t have access to accurate and real-time data, your organization runs the risk of making bad and costly decisions based on poor-quality business intelligence. In fact, Gartner research director, Mei Yang Selvage, recently said that the failure “to measure the impact results in reactive responses to data quality issues, missed business growth opportunities, increased risks, and lower ROI.”

Kensu + Matillion: A Technical Deep Dive

Kensu is the first solution to bring advanced data observability capabilities to support Matillion, empowering organizations to gain richer insights into their data pipelines and ultimately strengthening trust and data productivity. Matillion ETL is a popular tool for building and orchestrating data integration workflows. It simplifies extracting data from various sources, transforming it according to business requirements, and loading it into a cloud data platform.

Streaming Data Pipeline Development

This Meetup will cover how to build applications from some common use cases and highlight tips, tricks, best practices and patterns In this interactive session, Tim will lead participants through how to best build streaming data pipelines. He will cover how to build applications from some common use cases and highlight tips, tricks, best practices and patterns. He will show how to build the easy way and then dive deep into the underlying open source technologies including Apache NiFi, Apache Flink, Apache Kafka and Apache Iceberg.

Model Observability and ML Monitoring: Key Differences and Best Practices

AI has fundamentally changed the way business functions. Adoption of AI has more than doubled in the past five years, with enterprises engaging in increasingly advanced practices to scale and accelerate AI applications to production. As ML models become increasingly complex and integral to critical decision-making processes, ensuring their optimal performance and reliability has become a paramount concern for technology leaders.

The value of data observability to the data analyst

At the beginning of my career as a data analyst, I had to rely on other team members when something went wrong in our data pipeline, often only finding out about it after the event. That experience was one of the driving factors for me to join Kensu. When I spoke with the team for the first time, I had that “lightbulb moment”: data observability is a way of providing help to various data team members, including data analysts, in making their lives more productive and less painful.

Incorvus partners with Yellowfin to democratise analytics capability, enhanced by expert data-centric consultancy

LONDON, UNITED KINGDOM, August 14, 2023 - Global analytics software provider Yellowfin has announced a new strategic partnership with Incorvus, a leading digital metamorphosis consultancy in technology solutions and corporate training, to provide the next generation of self-service, AI-enabled, analytics to its customers and democratise data usage for more & non-technical users.

Unlocking Success with FinOps: Top Insights from Expert Virtual Event

The data landscape is constantly evolving, and with it come new challenges and opportunities for data teams. While generative AI and large language models (LLMs) seem to be all everyone is talking about, they are just the latest manifestation of a trend that has been evolving over the past several years: organizations tapping into petabyte-scale data volumes and running increasingly massive data pipelines to deliver ever more data analytics projects and AI/ML models.