Systems | Development | Analytics | API | Testing

Machine Learning

Accelerating Projects in Machine Learning with Applied ML Prototypes

It’s no secret that advancements like AI and machine learning (ML) can have a major impact on business operations. In Cloudera’s recent report Limitless: The Positive Power of AI, we found that 87% of business decision makers are achieving success through existing ML programs. Among the top benefits of ML, 59% of decision makers cite time savings, 54% cite cost savings, and 42% believe ML enables employees to focus on innovation as opposed to manual tasks.

How to Easily Deploy Your Hugging Face Models to Production - MLOps Live #20- With Hugging Face

Watch Julien Simon (Hugging Face), Noah Gift (MLOps Expert) and Aaron Haviv (Iguazio) discuss how you can deploy models into real business environments, serve them continuously at scale, manage their lifecycle in production, and much more in this on-demand webinar!

Unlocking the value of unstructured data at scale using BigQuery ML and object tables

Most commonly, data teams have worked with structured data. Unstructured data, which includes images, documents, and videos, will account for up to 80 percent of data by 2025. However, organizations currently use only a small percentage of this data to derive useful insights. One of main ways to extract value from unstructured data is by applying ML to the data.

How to Run Workloads on Spark Operator with Dynamic Allocation Using MLRun

With the Apache Spark 3.1 release in early 2021, the Spark on Kubernetes project has been production-ready for a few years. Spark on Kubernetes has become the new standard for deploying Spark. In the Iguazio MLOps platform, we built the Spark Operator into the platform to make the deployment of Spark Operator much simpler.