Systems | Development | Analytics | API | Testing

Machine Learning

Real-Time Streaming for Data Science

First, we collect data from an existing Kafka stream into an Iguazio time series table. Next, we visualize the stream with a Grafana dashboard; and finally, we access the data in a Jupyter notebook using Python code. We use a Nuclio serverless function to “listen” to a Kafka stream and then ingest its events into our time series table. Iguazio gets you started with a template for Kafka to time series.

MLOps in BigQuery ML with Vertex AI Model Registry

Without a central place to manage models, those responsible for operationalizing ML models have no way of knowing the overall status of trained models and data. This lack of manageability can impact the review and release process of models into production, which often requires offline reviews with many stakeholders.

GigaOm Names Iguazio a Leader and Outperformer for 2022

We’re proud to share that the Iguazio MLOps Platform has been named a leader and outperformer in the GigaOm Radar for Data Science Platforms: Pure-Play Specialist and Startup Vendors report. The GigaOm Radar reports take a forward-looking view of the market and are geared towards IT leaders tasked with evaluating solutions with an eye to the future. GigaOm analysts emphasize the value of innovation and differentiation over incumbent market position.

Iguazio named in Forrester's Now Tech: AI/ML Platforms, Q1 2022

We are delighted to share that Iguazio has been named along with Microsoft, Databricks, Cloudera, Alteryx and others in Now Tech: AI/ML Platforms, Q1 2022, Forrester’s Overview of the Leading AI/ML Platform Providers, by Mike Gualtieri. This report by Forrester Research looks at AI/ML Platform providers, to help technology executives evaluate and select one based on functionality aligned with their needs.

Top 8 Machine Learning Resources for Data Scientists, Data Engineers and Everyone

Machine learning is a practice that is evolving and developing every day. Newfound technologies, inventions and methodologies are being introduced to the community on a daily basis. As ML professionals, we can enrich our knowledge and become better at what we do by constantly learning from each other. But with so many resources out there, it might be overwhelming to choose which ones to stay up-to-date on. So where is the best place to start?