Systems | Development | Analytics | API | Testing

Machine Learning

Automating and Governing AI over Production Data on Azure - MLOPs Live #14 w/Microsoft

Many enterprises today face numerous challenges around handling data for AI/ML. They find themselves having to manually extract datasets from a variety of sources, which wastes time and resources. In this session, we discuss end-to-end automation of the production pipeline and how to govern AI in an automated way. We touch upon setting up a feedback loop, generating explainable AI and doing all of this — at scale.

Industrializing Enterprise AI with the Right Platform - MLOps Live #9 - With NVIDIA

We discuss how enterprises need a platform that brings together tools to streamline data science workflow with leading edge infrastructure that can tackle the most complex ML models — one that can bring innovative concepts into production sooner, integrated within your existing IT/DevOps-grounded approach.

Simplifying Deployment of ML in Federated Cloud and Edge Environments - MLOPs Live #12 - with AWS

We discuss some common applications for machine learning at the edge and the main challenges associated with deploying distributed cloud and edge applications. We then wrap up the session with a live demo showing how to run a distributed cloud or edge application on Amazon Cloud and Outposts with the Iguazio Data Science Platform.

How Feature Stores Accelerate & Simplify Deployment of AI to Production MLOPs Live #13

The breakdown:

00:00 - Intro
02:15 - MLOps Overview
05:03 - Feature Engineering
07:44 - MLOps Workflow
10:44 - Solution: Feature Store
14:25 - Feature Store Competitive Landscape
17:03 - Features of a Feature Store
21:01 - CTO: Feature Store Sneakpeak
25:55 - Python Code example
27:57 - ML Pipeline example
30:07 - Covid-19 Patient Deterioration
33:26 - LIVE DEMO
52:45 - QA

Iguazio Named A Fast Moving Leader by GigaOm in the 'Radar for MLOps' Report

At Iguazio, we’ve spoken and written at length about the challenges of bringing data science to production. The complexity of operationalizing ML can generate huge costs in terms of work hours and compute resources, especially as successful projects get scaled up and expanded. We’re proud to share that the Iguazio Data Science Platform has been named a fast moving leader in the GigaOm Radar for MLOps report.

Announcing Iguazio Version 3.0: Breaking the Silos for Faster Deployment

We’re delighted to announce the release of the Iguazio Data Science Platform version 3.0. Data Engineers and Data Scientists can now deploy their data pipelines and models to production faster than ever with features that break down silos between Data Scientists, Data Engineers and ML Engineers and give you more deployment options . The development experience has been improved, offering better visibility of the artifacts and greater freedom of choice to develop with your IDE of choice.

AI/ML without DataOps is just a pipe dream!

Let’s start with a real-world example from one of my past machine learning (ML) projects: We were building a customer churn model. “We urgently need an additional feature related to sentiment analysis of the customer support calls.” Creating the data pipeline to extract this dataset took about 4 months! Preparing, building, and scaling the Spark MLlib code took about 1.5-2 months!