Systems | Development | Analytics | API | Testing

Google BigQuery

BigQuery Admin reference guide: Query processing

BigQuery is capable of some truly impressive feats, be it scanning billions of rows based on a regular expression, joining large tables, or completing complex ETL tasks with just a SQL query. One advantage of BigQuery (and SQL in general), is it’s declarative nature. Your SQL indicates your requirements, but the system is responsible for figuring out how to satisfy that request. However, this approach also has its flaws - namely the problem of understanding intent.

Design considerations for SAP data modeling in BigQuery

Over the past few years, many organizations have experienced the benefits of migrating their SAP solutions to Google Cloud. But this migration can do more than reduce IT maintenance costs and make data more secure. By leveraging BigQuery, SAP customers can complement their SAP investments and gain fresh insights by consolidating enterprise data and easily extending it with powerful datasets and machine learning from Google.

Extending the power of Chronicle with BigQuery and Looker

Chronicle, Google Cloud’s security analytics platform, is built on Google’s infrastructure to help security teams run security operations at unprecedented speed and scale. Today, we’re excited to announce that we’re bringing more industry-leading Google technology to security teams by integrating Chronicle with Looker and BigQuery.

Crux chose BigQuery for rock-solid, cost-effective data delivery

At Crux Informatics, our mission is to get data flowing by removing obstacles in the delivery and ingestion of data at scale. We want to remove any friction across the data supply chain that stops companies from getting the most value out of data, so they can make smarter business decisions. But as you may know, if you’re in the business of data, this industry never stands still. It’s constantly evolving and changing.

Understanding jobs & the reservation model in BigQuery

What are jobs in BigQuery and how does the reservation model work? In this episode of BigQuery Spotlight, we’ll review jobs, reservations, and best practices for managing workload in BigQuery. We’ll also walk you through the difference between BI Engine reservations and standard reservations, so you can decide what will work best for you.

BigQuery admin reference guide: Tables & routines

Last week in our BigQuery Reference Guide series, we spoke about the BigQuery resource hierarchy - specifically digging into project and dataset structures. This week, we’re going one level deeper and talking through some of the resources within datasets. In this post, we’ll talk through the different types of tables available inside of BigQuery, and how to leverage routines for data transformation.

What's new with BigQuery ML: Unsupervised anomaly detection for time series and non-time series data

When it comes to anomaly detection, one of the key challenges that many organizations face is that it can be difficult to know how to define what an anomaly is. How do you define and anticipate unusual network intrusions, manufacturing defects, or insurance fraud? If you have labeled data with known anomalies, then you can choose from a variety of supervised machine learning model types that are already supported in BigQuery ML.

Mercury Rising in BigQuery with Multistatement Transactions

Mercury, the Roman god of commerce, is often depicted carrying a purse, symbolic of business transactions, wearing winged sandals, illustrating his abilities to move at great speeds. Transactions power the world’s business systems today, ranging from millions of packages moving worldwide tracked in real time by logistics companies to global payments from personal loans to securities trading to intergovernmental transactions, keeping goods and services flowing worldwide.