Today we’re excited to announce the public beta launch of Continual, the first operational AI platform built specifically for modern data teams and the modern data stack. We’re also announcing our $4M Series Seed, led by Amplify Partners, and joined by Illuminate Ventures, Wayfinder, DCF, and Essence, as well as new partnerships with Snowflake and dbt Labs.
Today we’re pleased to announce Continual Integration for dbt. We believe this is a radical simplification of the machine learning (ML) process for users of dbt and presents a well-defined path that bridges the gap between data analytics and data science. Read on to learn more about this integration and how you can get started.
It’s easy to take continuous integration (CI) and continuous delivery/deployment (CD) for granted these days, but these have been transformational concepts that have drastically changed the face of software development over the past thirty years.
While CI/CD is synonymous with modern software development best practices, today’s machine learning (ML) practitioners still lack similar tools and workflows for operating the ML development lifecycle on a level on par with software engineers. For background, follow a brief history of transformational CI/CD concepts and how they’re missing from today’s ML development lifecycle.