Systems | Development | Analytics | API | Testing

Latest Posts

Built with BigQuery: Gain instant access to comprehensive B2B data in BigQuery with ZoomInfo

Editor’s note: The post is part of a series highlighting our partners, and their solutions, that are Built with BigQuery. To fully leverage the data that’s critical for modern businesses, it must be accurate, complete, and up to date. Since 2007, ZoomInfo has provided B2B teams with the accurate firmographic, technographic, contact, and intent data they need to hit their marketing, sales, and revenue targets.

Built with BigQuery: Material Security's novel approach to protecting email

Since the very first email was sent more than 50 years ago, the now-ubiquitous communication tool has evolved into more than just an electronic method of communication. Businesses have come to rely on it as a storage system for financial reports, legal documents, and personnel records. From daily operations to client and employee communications to the lifeblood of sales and marketing, email is still the gold standard for digital communications.

Unlock real-time insights from your Oracle data in BigQuery

Relational databases are great at processing transactions, but they’re not designed to run analytics at scale. If you're a data engineer or a data analyst, you may want to continuously replicate your operational data into a data warehouse in real time, so you can make timely, data driven business decisions.

Previewing the power of BigQuery Remote Functions for drive time optimization

BigQuery's Remote Functions (in preview) make it possible to apply custom cloud functions to your warehouse without moving data or managing compute. This flexibility unlocks many use cases including data enrichment. In this post we demonstrate a pattern for combining BigQuery with the Google Maps API to add drive times to datasets containing origin and destination locations. This enrichment pattern is easily adapted for address geocoding or adding Google Map's place descriptions to locations.

Extending BigQuery Functions beyond SQL with Remote Functions, now in preview

Today we are announcing the Preview of BigQuery Remote Functions. Remote Functions are user-defined functions (UDF) that let you extend BigQuery SQL with your own custom code, written and hosted in Cloud Functions, Google Cloud’s scalable pay-as-you-go functions as a service. A remote UDF accepts columns from BigQuery as input, performs actions on that input using a Cloud Function, and returns the result of those actions as a value in the query result.

Now generally available: BigQuery BI Engine supports many BI tools or custom application

Customers who work with data warehouses, running BI on large datasets used to have to pick low latency but trading off freshness of data. With BigQuery BI Engine, they can accelerate their dashboards and reports that connect to BigQuery without having to sacrifice freshness of the data. Using the latest insights helps them make better decisions for the business.

Monitor & analyze BigQuery performance using Information Schema

In the exponentially growing data warehousing space, it is very important to capture, process and analyze the metadata and metrics of the jobs/queries for the purposes of auditing, tracking, performance tuning, capacity planning, etc. Historically, on-premise (on-prem) legacy data warehouse solutions have mature methods of collecting and reporting performance insights via query log reports, workload repositories etc. However all of this comes with an overhead of cost-storage & cpu.

BigQuery Omni innovations enhance customer experience to combine data with cross cloud analytics

IT leaders pick different clouds for many reasons, but the rest of the company shouldn’t be left to navigate the complexity of those decisions. For data analysts, that complexity is most immediately felt when navigating between data silos. Google Cloud has invested deeply in helping customers break down these barriers inherent in a disparate data stack. Back in October 2021, we launched BigQuery Omni to help data analysts access and query data across the barriers of multi cloud environments.

Automatic data risk management for BigQuery using DLP

Protecting sensitive data and preventing unintended data exposure is critical for businesses. However, many organizations lack the tools to stay on top of where sensitive data resides across their enterprise. It’s particularly concerning when sensitive data shows up in unexpected places – for example, in logs that services generate, when customers inadvertently send it in a customer support chat, or when managing unstructured analytical workloads.