Systems | Development | Analytics | API | Testing

Latest Posts

Building an automated data pipeline from BigQuery to Earth Engine with Cloud Functions

Over the years, vast amounts of satellite data have been collected and ever more granular data are being collected everyday. Until recently, those data have been an untapped asset in the commercial space. This is largely because the tools required for large scale analysis of this type of data were not readily available and neither was the satellite imagery itself. Thanks to Earth Engine, a planetary-scale platform for Earth science data & analysis, that is no longer the case.

Fraud Detection in Insurance Claim Process by Using Artificial Intelligence

One of the biggest preventable losses that hurts insurers worldwide is fraudulent insurance claims. The P&C segment accounts for the most fraudulent insurance claims, with auto insurance and workers’ compensation making up the biggest percentage of fraudulent claims that have an annual impact on the insurance business.

Power Your Lead Scoring with ML for Near Real-Time Predictions

Every organization wants to identify the right sales leads at the right time to optimize conversions. Lead scoring is a popular method for ranking prospects through an assessment of perceived value and sales-readiness. Scores are used to determine the order in which high-value leads are contacted, thus ensuring the best use of a salesperson’s time. Of course, lead scoring is only as good as the information supplied.

Test Environment: What it is And Why It Matters in Software Testing

In the simplest terms, a test environment is an interface (often a virtual environment) when software tests are executed. This includes the server required to power test infrastructure and hardware and software configurations to match specific projects and use cases; devices, browsers, operating systems, automation frameworks, network configuration, data, streaming implementation for testing over the cloud, etc.

How To Use a Customer Data Platform (CDP) as Your Data Warehouse

Here’s what you need to know about how to use your customer data platform (CDP) as your data warehouse: Whether you’re a mom-and-pop store or an ecommerce giant, understanding the customer journey is crucial to your organization’s success. When you collect data across a wide range of customer touchpoints, you can use this wealth of information for many different use cases: performing audience segmentation, improving your marketing campaigns, boosting customer engagement, and more.

Keboola + ThoughtSpot = Automated insights in minutes

Keboola and ThoughtSpot partnered up to offer click-and-launch insights machines. With the original integration, you can already cut the time-to-insight. Keboola helps you get clean data and ThoughtSpot helps you turn it into insights. What’s new? The new solution builds out-of-the-box and ready-to-use data pipelines (Keboola Templates) and live self-serve analytic dashboards (ThoughtSpot SpotApps) from the ground up. You just need to click-and-launch your analytic use case.

How to Do Data Labeling, Versioning, and Management for ML

It has been months ago when Toloka and ClearML met together to create this joint project. Our goal was to showcase to other ML practitioners how to first gather data and then version and manage data before it is fed to an ML model. We believe that following those best practices will help others build better and more robust AI solutions. If you are curious, have a look at the project we have created together.

A Guide to Principal Component Analysis (PCA) for Machine Learning

Principal Component Analysis (PCA) is one of the most commonly used unsupervised machine learning algorithms across a variety of applications: exploratory data analysis, dimensionality reduction, information compression, data de-noising, and plenty more. In this blog, we will go step-by-step and cover: Before we delve into its inner workings, let’s first get a better understanding of PCA. Imagine we have a 2-dimensional dataset.