Thanksgiving holiday is upon us. For many of our customers, this is one of the most important periods of the year, with more than 189.6 million U.S. shoppers buying up bargains from Thanksgiving day through Cyber Monday last year. For them and for us, it’s crucial that internal systems can handle high traffic volume without downtime or performance degradation.
Given the competitive value of analytics and rapid adoption rates across industries, you can’t afford a subpar analytics program. In the late 90s, Oakland Athletics general manager Billy Beane used data to discover undervalued talent and assemble a perennial playoff-caliber team, and he did so on a shoestring budget compared to Major League Baseball’s heavy hitters. Beane’s pioneering use of data analytics became the subject of the bestselling book Moneyball.
Many analytics programs struggle to assimilate data from numerous and unpredictable sources, but automated ELT offers a solution. Why do so many businesses struggle to establish successful analytics programs? A lack of data is not the problem. Data volumes — from hundreds of cloud applications to millions of IoT endpoints — are exploding across organizations and industries.
Implementing a modern, cloud-based analytics stack doesn’t have to be hard — you can do it in three steps, actually. Implementing a modern data stack (MDS) — data integration tool, cloud data warehouse and business intelligence platform — is the best way to establish a successful analytics program as data sources and data volumes multiply.
I met Matthew in New York City about a year ago. We sat in a private conference room and he told me the story of his pharma startup. A small group of researchers set out to solve the black-box enigma of certain kinds of vicious cancers. There are so many cancers, so their vision was to focus on especially heinous ones. Fast forward to their recent FDA approval of their “Hail Mary” procedure and treatment methodology for stage-four patients of a particular cancer.
Unravel provides full-stack coverage and a unified, end-to-end view of everything going on in your environment, plus recommendations from our rules-based model and our AI engine. Unravel works on-premises, in the cloud, and for cloud migration.