As the growth in embedding analytics into a product, application or service continues to accelerate in the market, some issues continue to frustrate our ISV and Data Provider partners in their journey to the cloud.
Tell us if this sounds familiar. You’ve found an awesome data set that you think will allow you to train a machine learning (ML) model that will accomplish the project goals; the only problem is the data is too big to fit in the compute environment that you’re using. In the day and age of “big data,” most might think this issue is trivial, but like anything in the world of data science things are hardly ever as straightforward as they seem.
Every organization wants to identify the right sales leads at the right time to optimize conversions. Lead scoring is a popular method for ranking prospects through an assessment of perceived value and sales-readiness. Scores are used to determine the order in which high-value leads are contacted, thus ensuring the best use of a salesperson’s time. Of course, lead scoring is only as good as the information supplied.
The Extract, Transform, and Load process (ETL for short) is a set of procedures in the data pipeline. It collects raw data from its sources (extracts), cleans and aggregates data (transforms) and saves the data to a database or data warehouse (loads), where it is ready to be analyzed. A well-engineered ETL process provides true business value and benefits such as: Novel business insights. The entire ETL process brings structure to your company’s information.
While the word “data” has been common since the 1940s, managing data’s growth, current use, and regulation is a relatively new frontier. Governments and enterprises are working hard today to figure out the structures and regulations needed around data collection and use. According to Gartner, by 2023 65% of the world’s population will have their personal data covered under modern privacy regulations.