Systems | Development | Analytics | API | Testing

Hevo

The Data Engineer's Crystal Ball: How Data Observability Helps You See What's Coming

Imagine you’re driving a car. You can see what’s happening on the road in front of you, but you have no idea what’s going on under the hood. It’s like driving blindly without any gauges or a dashboard to give you vital information. You don’t know how fast you’re going, how much fuel you have left, or if something is about to go wrong. In the same way, data engineers who lack data observability are like drivers with a limited view of the road.

Data 'Poka-Yoking' With Data Observability for the Modern Data Stack

While in the past, businesses used data to gain an edge over their rivals, in today’s competitive environment, data is imperative to stay in business. Modern businesses rely increasingly on data to manage all aspects of their operations, from everyday workflows to impacts on business strategy and customer interactions. As a result, data stacks have become extremely complex.

Offensive vs Defensive Data Strategy: Do You Really Need to Choose?

Deliberations about defining your data approach often revolve around an offensive vs defensive data strategy. Here, an offensive strategy is focused on driving positive outcomes through increased revenues and profitability or by providing an enhanced customer experience. The primary objectives of an offensive data strategy are typically tailored to the product or business side of the organization, prioritizing AI and analytics use cases to drive superior commercial or financial outcomes.

Are You Ready for the Data Quality Assessment?

The quality of your data determines how well it supports your business goals within a given context, be it in operations, planning, or decision-making. Low-quality data cannot effectively serve your purpose. Usually, decision-makers rely on data to support their decisions; however, much evidence suggests that poor or uncertain data quality can contribute to ineffective decision-making in practice.

Streamlining eCommerce Data Analytics

eCommerce analytics involves tracking a wide range of metrics relating to the complete journey of the customer, right from discovery to acquisition, conversion, retention and advocacy. Analytics lays a foundation framework for any eCommerce business and it helps them understand which marketing and sales initiatives are working, those that aren't, and the areas that have a great potential for growth.

Automate your Reports on Google Sheets with Hevo Activate

Usually, your business users request you share the business reports in Spreadsheets. They are highly familiar with Sheets and prefer their reports on Sheets only. They assume delivering reports in XLS format is easy and quick. But, we understand the efforts and time required to export reports to Spreadsheets. Every time, you will have to run queries on your centralized data at the warehouse and then export results in XLS format. You may need to edit and update the Sheet regularly.

Building and Managing the Modern Datastore: The Data Lakehouse

The 'data lakehouse' is quickly becoming popular in the data analytics community. Data lakehouse architecture combines the benefits of a data warehouse and a data lake. It aims to merge the data warehouse’s data structure and management features along with the flexibility and relatively low cost of the data lake. Watch this panel discussion to learn how the data lakehouse can address the limitations of the data lake and data warehouse architecture to deliver significant value for organizations. Explore why the data lakehouse is an ideal option for enterprise data storage initiatives.

Build Robust and Efficient Analytics Engine with Hevo's Data Transformation

In today’s digital age, robust and faster data analytics is essential for your organization’s growth and success. The faster you deliver analytics-ready data to your analyst, the faster they can analyze and derive insights. Though you would have adopted the ELT process with EL data pipelines to load data quickly to the warehouse, your team would still face inefficient and delayed analysis.

Data Warehouse Automation: What, Why, and How?

Building a data warehouse is an expensive affair and it often takes months to build one from scratch. There is also a constant struggle to keep up with the large volumes of data that is constantly generated. On top of that, setting up a strong architectural foundation, working on repetitive and mundane data validation tasks and ensuring data accuracy is another challenge. This puts tremendous stress on data teams and data warehouses. Data warehouse automation is intended to handle this growing complexity.