Systems | Development | Analytics | API | Testing

AI

Build Modern Innovative Solutions on Cloudera Data Platform Using the Power of Generative AI with Amazon Bedrock

Enterprises see embracing AI as a strategic imperative that will enable them to stay relevant in increasingly competitive markets. However, it remains difficult to quickly build these capabilities given the challenges with finding readily available talent and resources to get started rapidly on the AI journey.

ClearML Announces Extensive New Capabilities for Optimizing GPU Compute Resources

To ensure a frictionless AI/ML development lifecycle, ClearML recently announced extensive new capabilities for managing, scheduling, and optimizing GPU compute resources. This capability benefits customers regardless of whether their setup is on-premise, in the cloud, or hybrid. Under ClearML’s Orchestration menu, a new Enterprise Cost Management Center enables customers to better visualize and oversee what is happening in their clusters.

Build AI-driven near-real-time operational analytics with Amazon Aurora zero-ETL integration with Amazon Redshift and ThoughtSpot

Every business that analyzes their operational (or transactional) data needs to build a custom data pipeline involving several batch or streaming jobs to extract transactional data from relational databases, transform it, and load it into the data warehouse. In this post, we show how you can leverage Amazon Aurora zero-ETL integration with Amazon Redshift and ThoughtSpot for GenAI driven near real-time operational analytics.

How Healthcare and Life Sciences Can Unlock the Potential of Generative AI

A patient interaction turned into clinician notes in seconds, increasing patient engagement and clinical efficiency. Novel compounds designed with desired properties, accelerating drug discovery. Realistic synthetic data created at scale, expediting research in rare under-addressed disease areas.

Top 5 Resources to Understand the Role of AI/ML in Embedded Analytics

Every day, more companies unlock the potential of artificial intelligence (AI) and machine learning. When AI and machine learning are utilized in embedded analytics, the results are impressive. Much of this can be seen in modern solutions that offer advanced predictive analytics. Together, predictive analytics and AI can help application teams by streamlining processes, generating personalized recommendations, and creating a more intuitive and efficient user experience.