BigQuery's Remote Functions (in preview) make it possible to apply custom cloud functions to your warehouse without moving data or managing compute. This flexibility unlocks many use cases including data enrichment. In this post we demonstrate a pattern for combining BigQuery with the Google Maps API to add drive times to datasets containing origin and destination locations. This enrichment pattern is easily adapted for address geocoding or adding Google Map's place descriptions to locations.
Today we are announcing the Preview of BigQuery Remote Functions. Remote Functions are user-defined functions (UDF) that let you extend BigQuery SQL with your own custom code, written and hosted in Cloud Functions, Google Cloud’s scalable pay-as-you-go functions as a service. A remote UDF accepts columns from BigQuery as input, performs actions on that input using a Cloud Function, and returns the result of those actions as a value in the query result.
Tuning Hive on Tez queries can never be done in a one-size-fits-all approach. The performance on queries depends on the size of the data, file types, query design, and query patterns. During performance testing, evaluate and validate configuration parameters and any SQL modifications.
Hitachi Vantara recently commissioned Forrester Consulting to conduct a Total Economic Impact (TEI) study to examine the value that customers could achieve using cloud and application modernization services from Hitachi Vantara. To better understand the benefits, costs, and risks associated with this investment, Forrester interviewed four decision-makers at companies with experience using cloud and app modernization services from Hitachi Vantara.