Systems | Development | Analytics | API | Testing

%term

AWS and Confluent: Meeting the Requirements of Real-Time Operations

As government agencies work to improve both customer experience and operational efficiency, two tools have become critical: cloud services and data. Confluent and Amazon Web Services (AWS) have collaborated to make the move to and management of cloud easier while also enabling data streaming for real-time insights and action. We’ll be at the AWS Public Sector Summit in Washington, DC on June 26-27 to talk about and demo how our solutions work together.

Ensuring the performance of your Kafka-dependent applications

In today’s data-driven world, Apache Kafka has emerged as an essential component in building real-time data pipelines and streaming applications. Its fault tolerance, scalability, and ability to handle high throughput makes it a great choice for businesses handling high volumes of data.

New features in Helix Core and P4V 2024 #perforce #devops #versioncontrol #branching

Learn about the newest features in Helix Core and P4VIn our latest updates, you can now accelerate your development with lightweight branching via Sparse Streams and improve performance with backup-eligible partitioned workspaces ️

QA Testing Best Practices

Today, as businesses invest approximately 23% of their annual IT budget in QA and testing, the field of QA is undergoing a transformative shift. QA teams are often tasked with developing comprehensive test plans based on application development methodologies, architecture styles, frameworks, and other factors. However, for QA teams to develop better-quality software, they need to have the right mindset rather than simply enforcing rigid review processes.

Data Fabric Implementation: 6 Best Practices for IT Leaders

Trying to integrate data without knowing your starting point is like taking a road trip without a map—you’re bound to get lost. To navigate the challenges of data integration, IT leaders must first evaluate their current data setup. This means taking stock of all your data sources, understanding their quality, and identifying integration points. It’s like conducting a thorough inspection before renovating a house; you must know what you’re working with.

Data Lineage: A Complete Guide

Data lineage is an important concept in data governance. It outlines the path data takes from its source to its destination. Understanding data lineage helps increase transparency and decision-making for organizations reliant on data. This complete guide examines data lineage and its significance for teams. It also covers the difference between data lineage and other important data governance terms and common data lineage techniques.

Addressing the Elephant in the Room - Welcome to Today's Cloudera

Hadoop. The first time that I really became familiar with this term was at Hadoop World in New York City some ten or so years ago. There were thousands of attendees at the event – lining up for book signings and meetings with recruiters to fill the endless job openings for developers experienced with MapReduce and managing Big Data. This was the gold rush of the 21st century, except the gold was data.