Systems | Development | Analytics | API | Testing

BI

The Snowflake Telecom Data Cloud

As Snowflake rolls out its new Telecom Data Cloud, “Data Cloud Now” host Ryan Green sits down with Phil Kippen, Global Head of Industry, Telecom, at Snowflake, to discuss what it all means for telecom service providers. During the interview, Kippen notes that the arrival of 5G creates new market opportunities but also new operational complexities for telecom service providers as they take on the task of rolling out new services and managing new infrastructure. He explains that the rollout of the Telecom Data Cloud will help companies achieve operational efficiencies by providing a single, unified platform across all domains and business functions within the telecom service provider environment and across all clouds. In addition, Snowflake will help service providers create a new marketplace that will enhance their ability to find new ways to monetize their data and applications and will help them work with partners across the telecom ecosystem to develop new opportunities for collaboration and data sharing.

Implementing and Using UDFs in Cloudera SQL Stream Builder

Cloudera’s SQL Stream Builder (SSB) is a versatile platform for data analytics using SQL. As apart of Cloudera Streaming Analytics it enables users to easily write, run, and manage real-time SQL queries on streams with a smooth user experience, while it attempts to expose the full power of Apache Flink. SQL has been around for a long time, and it is a very well understood language for querying data.

Snowflake's Phil Kippen Weighs In on Launch of the Telecom Data Cloud

Today Snowflake is officially launching the Telecom Data Cloud. Snowflake’s newest Data Cloud helps telecommunications service providers break down data silos within the business and across the ecosystem, allowing organizations to easily and securely access data in near real time, enrich it with machine learning models, and then share and analyze it to drive better decision-making.

The Evolution from DevOps to DataOps

By Jason Bloomberg, President, Intellyx Part 2 of the Demystifying Data Observability Series for Unravel Data In part one of this series, fellow Intellyx analyst Jason English explained the differences between DevOps and DataOps, drilling down into the importance of DataOps observability. The question he left open for this article: how did we get here? How did DevOps evolve to what it is today, and what parallels or differences can we find in the growth of DataOps?

SaaS In 60 - The Business Glossary

The Business Glossary helps eliminate data confusion by providing a comprehensive library of terms and descriptions that clearly identify how an organization defines its metrics measures and dimensions. It can streamline data-based decisions by eliminating misunderstandings due to competing terminologies or inconsistencies between technology definitions and business language. And a glossary can simplify regulatory compliance and serve as an important tool for data governance.

Traditional BI vs Self-Service Analytics: What's the Difference?

Data has historically been in the hands of a select few in most businesses - until recently. Business intelligence (BI) solutions have evolved dramatically in the last few years to not only be more sophisticated, but simpler and more accessible for regular professionals to use analytics tools and get the insights they need to make decisions.

Snowflake Snowpark Explained In Under 2 Minutes

Learn about Snowflake Snowpark. What if there was a way to enable your entire team to collaborate securely on the same data in a single platform that just works, regardless of language? Snowpark is here to help. Supercharge your data team to securely build scalable, optimized pipelines in your language. Quickly and efficiently execute machine learning workflows, with your choice of language, from Python to Scala and more. For more details visit: snowflake.com/snowpark