Analytics

Enabling Self-Service Business Insights with Cloudera Data Warehouse

Requests to Central IT for data warehousing services can take weeks or months to deliver. Central IT teams at large organizations face a proliferation of IT projects arising from the complexities of markets and from the needs of internal lines of business (LoBs). At the same time, Central IT must juggle cost and risk.

Top 5 Questions about Apache NiFi

Over the last few weeks, I delivered four live NiFi demo sessions, showing how to use NiFi connectors and processors to connect to various systems, with 1000 attendees in different geographic regions. I want to thank you all for joining and attending these events! Interactive demo sessions and live Q&A are what we all need these days when working remotely from home is now a norm. If you have not seen my live demo session, you can catch up by watching it here.

Lessons Learned on Operationalizing Machine Learning at Scale with IHS Markit

According to Gartner, over 80% of data science projects never make it to production. This is the main problem that enterprises are facing today, when bringing data science into their organization or scaling existing projects. In this session, Senior Data Scientist Nick Brown will share his lessons learned from operationalizing machine learning at IHS Markit. He will discuss the functional requirements required to operationalize machine learning at scale, and what you need to focus on to ensure you have a reliable solution for developing and deploying AI.

How to Comply with Sweden's PII Data Protection Act

Personal Identifiable Information (PII) has become a headache for most digital-first businesses in recent years. Everyone agrees we need rules to keep personal data safe, but there’s no universal PII Data Protection Act we can all follow. Instead, there is a worldwide patchwork of regulations, many of which have global implications. Sweden is one of the pioneers in data security laws.

Stitch vs. Jitterbit vs. Xplenty: What's the Difference?

The key differences between Stitch, Jitterbit, and Xplenty: The average business pulls data from 400 different locations, which makes it tricky to generate valuable data insights. Data-driven organizations use an Extract, Transform, and Load (ETL) platform to pull all this information into a data lake or warehouse for deeper analysis. However, many businesses lack the technical skills (like coding) to facilitate this process. The three tools in this review make ETL workflows easier.

5 Best Practices for Integrating Data Science Into Your Marketing Analytics

Personalization enables marketers to send hypertargeted content and offers that are more likely to drive purchases and cultivate brand loyalty. Research by Accenture from 2018 shows that 91% of consumers are more likely to shop with companies that provide relevant offers and recommendations. Though personalization helps marketers optimize ad spend and drive improvements in customer lifetime value, basket size, and retention, it’s still untenable at scale in many organizations.